Экспонента в степени мнимая единица

Экспонента в степени мнимая единица

Показательная и тригонометрическая функции в области КЧ связаны между собой формулой:

Пусть КЧ Z в тригонометрической форме имеет вид Z= r (cosq+isinq). Тогда из (1) следует, что z= re iq – показательная форма записи КЧ.

r= |z|= =; q=argz=

z= -показательная форма записи КЧ.

С помощью ф. Эйлера можно определить показательную функцию комплексного аргумента.

Пусть z=x+iy, тогда Любой пример.

Заменим в (1) q на –q. Получим: . Отсюда cosq=.

Аналогично, sinq=. (Любой пример)

Действия над КЧ в показательной форме

Произведение 2-ух КЧ z1=x1+iy1 , z2=x2+iy2 равно z1z2=y1* y2= y1y2=y1y2.

Деление ==

Возведение в целую положительную степень — ф. Муавра

Извлечение корня n-степени

42. Функция, область определения функции, график функции, способы задания. Понятие неявной, обратной, сложной функции.

Опр: Пусть заданы 2 непустых множества X и Y. Если каждому элементу х€Х по правилу f соответствует единственное значение у€У, то говорят, что на множестве Х задана функция f со множеством значений У.

у- зависимая переменная, функция

Х=D(f)- область определения-все те значения х, при которых сосчитана функция

У= Е(f)- область значений

Опр: Графиком функции у=f(x)называют множество точек плоскости Оху с координатами (х, f(x)), где х€D(f)

аналитический явно у=f(x)

Опр: Если у зависит от U, а U зависит от х, то у зависит от х, и называется сложной функцией.

Опр: Функция у=f(x) называется обратимой на Х, если ))

Опр: Пусть у=f(x) – обратимая функция на Х

Выразим из формулы у=f(x) переменную х, получим х=

Заменив у на х , х на у, имеем у=f -1 (x)

43. Основные элементарные функции, их свойства и графики

Опр: Функция, заданная формулой у=а х , где а>0, аназывается показательной функцией с основанием а.

При а=1 имеем график прямой линии, параллельной Ох.

Свойства: D(y)=

E(y)=

монотонна: возрастает при а>1,

неограниченная, непрерывная, непериодическая

Опр: Функция у=, где а>0, а, называется логарифмической. Эта функция является обратной к показательной функции; ее график может быть получен поворотом графика у=а х вокруг биссектрисы 1 координатного угла.

Свойства: D(y)=

монотонна: возрастает при а>1

неограниченная, непрерывная, непериодическая

Опр: Функция, заданная формулой у=х α , называется степенной функцией, где α-постоянная.

При α=1 получаем прямую, при α=2-квадратную параболу, при α=-1-гиперболу, при α=3-кубическую параболу.

Илья Бирман в заметке о числах π и e написал об их связи со мнимой единицей:

Числа π и e входят в мою любимую формулу — формулу Эйлера, которая связывает 5 самых главных констант — ноль, единицу, мнимую единицу i и, собственно, числа π и е:

Почему число 2,7182818284590 в комплексной степени 3,1415926535i вдруг равно минус единице? Ответ на этот вопрос выходит за рамки заметки и мог бы составить содержание небольшой книги, которая потребует некоторого начального понимания тригонометрии, пределов и рядов.

Замечание о небольшой книге верно. Но я собираюсь в одной заметке рассказать, почему , без привлечения пределов и рядов. Сначала я остановлюсь на приближенном выражении для экспоненты, а также напомню, как обращаться с комплексными числами.

Экспоненциальная функция

$$egin[scale=1.0544]small egin[axis line style=gray, samples=120, width=11.3cm,height=7.158cm, xmin=-2.1, xmax=2.1, ymin=0, ymax=1.8, restrict y to domain=-0.2:2, ytick=<1>, xtick=<-1,1>, axis equal, axis x line=center, axis y line=center, xlabel=$x$,ylabel=$y$] addplot[red,domain=-2:1,semithick]; addplot[black]; addplot[] coordinates <(1,1.5)>node<$y=x+1$>; addplot[red] coordinates <(-1,0.6)>node<$y=e^x$>; path (axis cs:0,0) node [anchor=north west,yshift=-0.07cm] <0>; end end$$

Экспоненциальная функция среди степенных функций с другими основаниями примечательна тем, что касательная к ее графику в точке идет под углом в 45 градусов. Как видно из рисунка, вблизи точки касания кривую можно заменить самой касательной . Поэтому для очень малых значений x экспоненту легко вычислить по приближенной формуле

Что делать, если показатель экспоненты не является малым числом? Попробуем извлечь корень из e x и сразу же возвести в квадрат: . Показатель экспоненты уменьшился в два раза. Ясно, что если экспоненту разбить на большее количество множителей, показатель уменьшится еще сильнее: e x = (e x/n ) n . Выбираем n очень большим и используем приближение для e x/n :

Чем больше n, тем меньше аргумент экспоненты x/n и тем точнее работает эта формула.

Комплексные числа

Комплексное число — это сумма обычного действительного числа a и мнимого числа bi, где мнимая единица i есть решение уравнения . Правила действий над комплексными числами легко получить, если потребовать, чтобы основные формулы арифметики действительных чисел, такие как возведение в степень и раскрытие скобок, были верны и для комплексных чисел. То есть комплексные числа можно складывать и умножать как обычно, нужно только помнить, что . Например,

У комплексных чисел a + bi есть наглядное графическое представление. Будем считать, что это число задает точку с координатами . Или, что то же самое, вектор, проведенный из начала координат в эту точку. Проекции вектора на оси координат есть a и b. Ясно, что каждому вектору можно сопоставить свою пару чисел , то есть свое комплексное число .

$$egin[semithick,scale=1.0545]small ikzset<>=stealth> def
<2.3>defl <4>defll <l*0.8>defh <0.6>defa <2.4>def <1.8>def <0.07>defp <0.5>draw[->,thin,gray](-h,0)—(l,0); draw[->,thin,gray](0,-h)—(0,ll); draw[red!50!black](0,0)—(a,0) node[midway,below] <$a$>; draw[black!50!green](a,0)—(a,) node[midway,right] <$b$>; draw[->,black!40!blue](0,0)—(a,) node[midway,above] <$r$>node[p=1,above,black] <$(a,b)$>; draw[thin](p,0) arc (0:atan2(,a):p) node[midway,right,yshift=0.06cm] <$alpha$>; path(0,0) node [anchor=north west,yshift=-0.07cm] <0>; draw[line width=0.21mm,opacity=0] (-h,-h) rectangle (l,ll); end
$$

Представление в виде вектора удобно, когда речь идет о сумме комплексных чисел. Тогда вектор, соответствующий сумме комплексных чисел, равен сумме векторов, соответствующих каждому слагаемому. К сожалению, у произведения комплексных чисел нет такой наглядной картины. Тем не менее, чтобы сформулировать относительно простое правило для представления произведения в виде вектора, перейдем от декартовых координат к полярным координатам r и α. Первое число задает длину вектора и называется модулем комплексного числа, а второе есть угол между вектором и осью абсцисс и называется аргументом. Ясно, что каждая пара этих чисел, r и α, тоже однозначно задает свой вектор и свое комплексное число.

Теперь можно сформулировать правило умножения в терминах длины вектора и его направления (оно выведено в дополнении к заметке). Длина вектора произведения равна произведению длин векторов сомножителей, а аргумент (угол между вектором и осью абсцисс) равен сумме аргументов. Я изобразил это правило на рисунке. Здесь синий вектор равен произведению зеленого и красного.

$$egin[scale=1.0545,semithick,st1/.style=>,st2/.style=>,st3/.style=>] footnotesize ikzset<>=stealth> def
<2.5>def
a <1.3>defaa <48>def
b <1.1>defab <72>def <1.8>def <0.07>defl <
*1.6>draw[gray,thin,->] (-0.5*l,0)—(l,0); draw[gray,thin,->] (0,-0.6)—(0,l); draw[st1](0,0)—(aa:
a*
) node[pos=0.7,left] <$r$>; draw[st2](0,0)—(ab:
b*
) node[pos=0.7,left] <$R$>; draw[st3](0,0)—(aa+ab:
b*
a*
) node[pos=0.6,left] <$rcdot R,$>; defpa <1.2>draw[thin,st1] (pa,0) arc (0:aa:pa) node[midway,right,yshift=0.06cm] <$alpha$>; defpb <1.0>draw[thin,st2] (pb,0) arc (0:ab:pb) node[pos=0.74,above] <$eta$>; defpb <0.8>draw[thin,st3] (pb,0) arc (0:aa+ab:pb) node[pos=0.81,above] <$alpha!+!eta$>; draw[very thin] (
, )—(
, — ) node[below] <$1$>( ,
)—(- ,
) node[left] <$1$>(0,0) node [anchor=north west,yshift=-0.07cm] <0>; draw [line width=0.21mm,opacity=0] (-0.5*l,-0.6) rectangle (l,l); end
$$

Возведение в комплексную степень

В отличие от сложения и умножения, правило возведения в комплексную степень , или хотя бы во мнимую степень x bi , нельзя получить, обобщив обычное правило возведения в действительную степень. Например, 2 i — это результат умножения числа 2 самого на себя «i раз». Непонятно, правда?

Читайте также:  Битрикс site under construction

Чтобы всё же определить возведение в комплексную степень, нужно привлечь дополнительные принципы или соображения по отношению к правилам арифметики. В качестве такого принципа я предлагаю считать разложение e x ≈ 1 + x около нуля справедливым не только для действительных x, но и для комплексных.

Если это разложение верно, то тогда приближенная формула e x ≈ (1 + x/n) n должна работать и для комплексных чисел. В ее показателе уже нет мнимой единицы, поэтому расчеты можно проводить с помощью выписанных выше правил. Это ровно то, что нам нужно для вычисления e .

Возьмем для примера n = 10 и будем умножать число 1 + /10 само на себя, чтобы получить . К счастью, компьютер большую часть работы делает за нас:

(1 + /10) 1 = 1 + 0,3142i
(1 + /10) 2 = 1 + 2·0,3142i − 0,3142 2 = 0,9013 + 0,6283i
(1 + /10) 3 = 0,7039 + 0,9115i
(1 + /10) 4 = 0,4176 + 1,1326i
(1 + /10) 5 = 0,0617 + 1,2638i
(1 + /10) 6 = −0,3352 + 1,2832i
(1 + /10) 7 = −0,7384 + 1,1779i
(1 + /10) 8 = −1,1085 + 0,9459i
(1 + /10) 9 = −1,4056 + 0,5976i
(1 + /10) 10 = −1,5934 + 0,1561i

Вот эти числа на рисунке:

В соответствии с правилом умножения, аргумент растет как арифметическая прогрессия, а модуль — как геометрическая. К сожалению, из-за небольшого n наша формула слишком неточная, и мы пришли к числу вместо ожидаемого −1. Но зато мы понимаем процедуру, которая при неограниченном росте n даст нужное значение.

Действительно, чем меньше число /n, тем с большей точностью отрезок касательной /n приближает дугу окружности, тем ближе к π/n угол между соседними векторами и тем меньше отклонение длины векторов от 1. В пределе мы получим точки окружности единичного радиуса, а само число попадет в −1. Прямые вычисления это подтверждают:

(1 + /100) 100 = −1,0506 + 0,001085i,
(1 + /1000) 1000 = −1,004946 + 0,00001039i,
(1 + /10000) 10000 = −1,0004936 + 1,03·10 −7 i.

Дополнение 1. Привлечение математической строгости

Я на простых примерах рассказал о том, как ведут себя числа и функции. Математики обычно не используют изложенный выше способ рассуждений, хотя его можно сделать вполне строгим с помощью понятий предела и «о малого».

Но даже если следовать абсолютно строгому математическому пути построения теории, нельзя просто так ввести правило возведения в комплексную степень, без дополнительных определений и аксиом. Разложение e x ≈ 1 + x представляет собой два первых слагаемых в ряде Тейлора (остальными слагаемыми мы пренебрегли, потому что они дадут поправку порядка x 2 , которая несущественна при малых x). В простейшем случае комплексная экспонента определяется как сумма всех слагаемых ряда Тейлора. С использованием такого определения вывод формулы , и ее частного случая, формулы Эйлера, является легким упражнением для изучающих математический анализ.

В более продвинутом курсе теории функций комплексной переменной вводится понятие аналитической функции. Это такая функция f, которая раскладывается в ряд Тейлора, который сходится к самой функции f. (Для того чтобы комплексная функция была аналитической в какой-то области, достаточно, чтобы она была дифференцируемой в этой области. Требование дифференцируемости в комплексном случае гораздо сильнее, чем в действительном. Комплексная дифференцируемая функция в области бесконечно дифференцируема и аналитична на ней.) Оказывается, что аналитическую функцию, определенную для действительных чисел, можно единственным образом продолжить в область комплексных чисел, чтобы функция осталась аналитической. В этом и состоит обоснование выбора определения комплексной экспоненты через ряды: мы специально выбираем экспоненту в виде ряда, чтобы получилась аналитическая функция.

Дополнение 2. Тригонометрическая форма и умножение комплексных чисел

$$egin[semithick,scale=1.0545]small ikzset<>=stealth> def
<2.3>defl <4>defll <l*0.8>defh <0.6>defa <2.4>def <1.8>def <0.07>defp <0.5>draw[->,thin,gray](-h,0)—(l,0); draw[->,thin,gray](0,-h)—(0,ll); draw[red!50!black](0,0)—(a,0) node[midway,below] <$a$>; draw[black!50!green](a,0)—(a,) node[midway,right] <$b$>; draw[->,black!40!blue](0,0)—(a,) node[midway,above] <$r$>node[p=1,above,black] <$(a,b)$>; draw[thin](p,0) arc (0:atan2(,a):p) node[midway,right,yshift=0.06cm] <$alpha$>; path(0,0) node [anchor=north west,yshift=-0.07cm] <0>; draw[line width=0.21mm,opacity=0] (-h,-h) rectangle (l,ll); end
$$

После перехода от декартовых координат к полярным через последние можно выразить действительную и мнимую часть комплексного числа , которые являются катетами в треугольнике с гипотенузой r и углом α:

Перемножим два комплексных числа в тригонометрической форме:

Вспоминая тригонометрические формулы, видим, что в круглых скобках получились выражения для косинуса и синуса суммы углов. Окончательный ответ имеет вид

Таким образом, модуль произведения комплексных чисел равен произведению модулей сомножителей, а аргумент произведения есть сумма произведений сомножителей.

Дополнение 3. О приближенных методах вычислений

В физике постоянно используются приближенные методы, особенно разложение в ряд Тейлора до первого (изредка до второго) слагаемого. Дело в том, что аналитическое решение в виде формулы можно получить разве что в простейших задачах. Численно, на компьютере, тоже не всякая задача решается. Поэтому часто в ходе преобразований приходится что-нибудь раскладывать и чем-нибудь пренебрегать.

Иногда приближенные методы удается использовать и в арифметических задачах. Прекрасный пример встречается в книге «Вы, конечно, шутите, мистер Фейнман»:

Тут в ресторан вошел японец. Я уже раньше видел его: он бродил по городу, пытаясь продать счеты. Он начал разговаривать с официантами и бросил им вызов, заявив, что может складывать числа быстрее, чем любой из них.

Официанты не хотели потерять лицо, поэтому сказали: «Да, да, конечно. А почему бы Вам не пойти к тому посетителю и не устроить соревнование с ним?»

Этот человек подошел ко мне. Я попытался сопротивляться: «Я плохо говорю на португальском!»

Официанты засмеялись. «С числами это не имеет значения», — сказали они.

Они принесли мне карандаш и бумагу.

Человек попросил официанта назвать несколько чисел, которые нужно сложить. Он разбил меня наголову, потому что пока я писал числа, он уже складывал их.

Тогда я предложил, чтобы официант написал два одинаковых списка чисел и отдал их нам одновременно. Разница оказалась небольшой. Он опять выиграл у меня приличное время.

Однако японец вошел в раж: он хотел показать, какой он умный. «Multiplicao!» — сказал он.

Кто-то написал задачу. Он снова выиграл у меня, хотя и не так много, потому что я довольно прилично умею умножать.

А потом этот человек сделал ошибку: он предложил деление. Он не понимал одного: чем сложнее задача, тем у меня больше шансов победить.

Нам дали длинную задачу на деление. Ничья.

Это весьма обеспокоило японца, потому что он явно прекрасно умел выполнять арифметические операции с помощью счет, а тут его почти победил какой-то посетитель ресторана.

«Raios cubicos!» — мстительно говорит он. Кубические корни! Он хочет брать кубические корни с помощью арифметики! Трудно найти более сложную фундаментальную задачу в арифметике. Должно быть, это был его конек в упражнениях со счетами.

Он пишет на бумаге число — любое большое число — я до сих пор его помню: 1729,03. Он начинает работать с этим числом и при этом что-то бормочет и ворчит: «Бу-бу-бу-хм-гм-бу-бу», — он трудится как демон! Он просто погружается в этот кубический корень!

Читайте также:  Как подключить ntfs к ps3

Я же тем временем просто сижу на своем месте.

Один из официантов говорит: «Что Вы делаете?»

Я указываю на голову. «Думаю!» — говорю я. Затем пишу на бумаге 12. Еще через какое-то время — 12,002.

Человек со счетами вытирает со лба пот и говорит: «Двенадцать!»

«О, нет! — возражаю я. — Больше цифр! Больше цифр!» Я знаю, что, когда с помощью арифметики берешь кубический корень, то каждая последующая цифра требует большего труда, чем предыдущая. Это работа не из легких.

Он опять уходит в работу и при этом бормочет: «Уф-фыр-хм-уф-хм-гм. ». Я же добавляю еще две цифры. Наконец, он поднимает голову и говорит: «12,0!»

Официанты просто светятся от счастья. Они говорят японцу: «Смотрите! Он делает это в уме, а Вам нужны счеты! И цифр у него больше!»

Он был абсолютно измотан и ушел, побежденный и униженный. Официанты поздравили друг друга.

Каким же образом посетитель выиграл у счетов? Число было 1729,03. Я случайно знал, что в кубическом футе 1728 кубических дюймов, так что было ясно, что ответ немногим больше 12. Излишек же, равный 1,03, — это всего лишь одна часть из почти 2000, а во время курса исчисления я запомнил, что для маленьких дробей излишек кубического корня равен одной трети излишка числа. Так что мне пришлось лишь найти дробь 1/1728, затем умножить полученный результат на 4 (разделить на 3 и умножить на 12). Вот так мне удалось получить целую кучу цифр.

Несколько недель спустя этот человек вошел в бар того отеля, в котором я остановился. Он узнал меня и подошел. «Скажите мне, — спросил он, — как Вам удалось так быстро решить задачу с кубическим корнем?»

Я начал объяснять, что использовал приближенный метод, и мне достаточно было определить процент ошибки. «Допустим, Вы дали мне число 28. Кубический корень из 27 равен 3. »

Он берет счеты: жжжжжжжжжжжжжжжж — «Да», — соглашается он.

И тут до меня доходит: он не знает чисел. Когда у тебя есть счеты, не нужно запоминать множество арифметических комбинаций; нужно просто научится щелкать костяшками вверх-вниз. Нет необходимости запоминать, что 9 + 7 = 16; ты просто знаешь, что когда прибавляешь 9, то нужно передвинуть десятичную костяшку вверх, а единичную — вниз. Поэтому основные арифметические действия мы выполняем медленнее, зато мы знаем числа.

Более того, сама идея о приближенном методе вычисления была за пределами его понимания, несмотря на то, что зачастую невозможно найти метод точного вычисления кубического корня. Поэтому мне так и не удалось научить его брать кубический корень или объяснить, как мне повезло, что он выбрал число 1729,03.

Фейнман использовал ряд Тейлора для степенной функции, который для кубического корня выглядит как $$sqrt[3]<1+x>=1+x/3+ldots$$ Вот вся последовательность вычислений:

В этом приближенном ответе благодаря малости числа 1,03/1728 по сравнению с единицей все цифры точные, расхождение с правильным ответом начинается в шестом знаке после запятой. Самая сложная операция в приведенной цепочке — вычисление дроби 1,03/432.

Несмотря на простоту записи, эта формула несёт принципиально важную идею и находит применение почти во всех современных точных исследованиях и разработках.

Общие сведения

Формула Эйлера утверждает, что:

  • i — мнимая единица, то есть корень квадратный из -1;
  • e – экспонента, одна из важнейших математических констант, определяется выражением:

Формула, связывающая тригонометрические и функции экспоненциальные выражения, имеет множество применений. Она позволяет рассчитать некоторые выражения, решения которых невозможно или проблематично вычислить другим путём.

Необходимо лишь превратить исходные формулы в конструкцию, которая будет содержать удобные для проведения дальнейших операций функции.

Экспоненциальные и тригонометрические выражения обладают столь многочисленными свойствами, что имеют наиболее широкую область использования. Это делает неочевидную связь между ними особенно полезной.

История создания

Первым формулу опубликовал Роджер Котс, математик родом из Англии, в научном журнале, издаваемом Лондонским королевским обществом. Затем, формула была отображена в книге «Гармония мер», которую издали после смерти автора — в 1722 году. Котс не придал ей большого значения и отобразил среди геометрических построений. Чтоб полученное Котсом выражение приобрело привычный вид, необходимо исправить ошибку в знаке и перевести на современный язык описания математики.

Формулу в привычном для людей виде опубликовал Эйлер в статье 1740 года. В 1748 году выражение было также представлено в его книге «Введение в анализ бесконечно малых». Эйлер доказал формулу на основе бесконечных разложений составляющих формулы в степенные ряды.

Но учёные того времени не рассматривали геометрической интерпретации формулы, которая используется на сегодняшний день. Представление о комплексных числах в виде точек на комплексной плоскости, на основе которого строится геометрическая интерпретация равенства, появилось примерно на 50 лет позже в работах К. Весселя.

Доказательство формулы

Вывод формулы Эйлера можно выполнить, используя ряд Маклорена – частный случай ряда Тейлора при разложении функции в окрестности точки x=0. Раскладывая левую часть равенства, получится cтепенной ряд, в котором в различные степени будет возводиться мнимая единица. Необходимо вынести её, сформировав коэффициент перед x.

При расчёте степеней мнимой единицы удаётся получить интересный эффект: если степень чётная – можно её представить как умножение некоторого числа пар i*i, которые можно заменить на -1 (из определения мнимой единицы). А при умножении между собой отрицательных единиц возможны два случая, опять же исходя из чётности их количества. Если их число кратно 2, то получают просто единицу («минус на минус даёт плюс»). Если их нечётное число – получится -1.

С другой стороны, из всех членов, где мнимая единица стоит в нечётной степени, она выносится за скобки. В них останется выражение, подобное тому, которое вышло для чётных степеней.

Таким образом, чередование происходит дважды: по чётности степеней мнимой единицы, а следом – по чётности степеней -1, которые были получены вследствие первого шага. Получается циклическое изменение на каждые четыре члена суммы.

После разделения мнимых и вещественных членов последовательности и расстановки чередующихся знаков формируются две группы слагаемых, которые представляют собой разложения других функций – синуса и косинуса. При их подстановке получится равенство Эйлера.

Использование

Геометрическая интерпретация позволяет наглядно отобразить математические преобразования. Для этой цели используется комплексная плоскость. Она геометрически отображает комплексные величины: вдоль горизонтальной оси откладывается вещественная часть числа, а вдоль вертикальной – мнимая. Таким образом, число отражается точкой с координатами, представляющими собой вещественную (Re) и мнимую (Im) его части. Часто для удобства используется вектор, проведённый из начала координат в эту точку (радиус-вектор). Несложно понять, что его координаты совпадают с координатами той самой точки.

Читайте также:  Как восстановить одноклассники если не помнишь логин

В геометрической интерпретации рассматривается единичная окружность (радиус равен единице). Для любой точки, принадлежащей окружности, можно построить прямоугольные треугольники, опуская перпендикуляры на оси координат. Это позволяет сделать переход в полярную систему координат, которая удобна для пояснения другой формы числа.

В ней положение точки определяется не расстояниями, отложенными на осях, а длиной вектора, проведённого в точку из начала координат и углом поворота относительно оси (вещественной).

Из свойств прямоугольного треугольника следует, что синус используемого угла равен отношению мнимой части числа (противолежащего катета) к длине вектора (гипотенузе). Так как длина гипотенузы равна единице (радиус окружности), то мнимая часть числа равна синусу угла. Аналогично вдоль вещественной оси откладывается расстояние, равное косинусу этого угла. Теперь для получения числа в новом виде осталось только сложить его части, не забыв умножить мнимую на i. Таким образом, исходное число равно:

Последняя конструкция в точности повторяет выражение, стоящее в правой части равенства Эйлера. Значит, благодаря ей появляется возможность отобразить комплексную величину по-новому – через экспоненту:

Комплексный анализ

Формула играет важную роль в комплексном анализе. На её основе строится связь тригонометрической и показательной форм записи комплексного числа, которая отображена в только что полученной формуле.

Нельзя ограничиваться единичной окружностью. Как отобразить любую точку комплексной плоскости в новом виде? Можно это представить очень просто: будет изменяться радиус. Тогда числа, выраженные через синус и косинус, будут умножаться на длину гипотенузы (радиус окружности). Эта длина называется модулем комплексной величины, а угол поворота – аргументом.

Модуль обозначается так же, как и обычный модуль для вещественного числа, ведь он представляет просто более общий случай. В то же время для аргумента стало использоваться новое обозначение – arg.

И синус, и косинус умножаются на модуль. Следовательно, его можно вынести за скобки. Что осталось в скобках? – Всё та же правая часть любимой формулы. Можно заменить содержимое скобок на экспоненту.

Таким образом, имеется три формы записи комплексного числа:

  • алгебраическая;
  • тригонометрическая;
  • показательная.

Последние две связаны между собой за счёт формулы Эйлера. Зачем их три? Новичку, как правило, приятно использовать алгебраическую, ведь она проще выглядит: лишь сумма двух чисел. Но некоторые операции очень сложно либо даже невозможно осуществить, используя лишь её.

Так что часто приходится переводить число из алгебраической формы в тригонометрическую, которая имеет ряд полезных особенностей. А вот перейти к показательной форме от тригонометрической не составит труда – копируется аргумент числа и вставляется в степень e, умножив на i.

Производные формулы

Формула Эйлера выражает экспоненту через тригонометрические функции, но можно получить и обратное преобразование. Применимость её для таких целей очевидна. Заменяют x на –x. Косинус – чётная функция, синус – нечётная. В результате замены происходит изменение знака перед синусом.

Сложение и вычитание полученных выражений приводит к уравнению, с одной стороны которого располагается удвоенный косинус или синус, а с другой – комбинация экспонент. Выразить отсюда тригонометрическую функцию не составит труда.

Эти формулы имеют большое значение при работе с преобразованиями комплексных величин. Например, они могут служить определением тригонометрических функций комплексной переменной.

При обычном рассмотрении тригонометрических функций не удаётся получить значения для комплексного аргумента, зато есть возможность поставить такое значение в только что полученную формулу. В результате преобразований можно получить значение, которое выражается лишь через косинусы и синусы вещественной переменной, а также гиперболические косинусы и синусы, опять же, с вещественными аргументами.

Таким образом, для получения значений ряда функций комплексных используются следствия формулы Эйлера.

Пример применения:

Также эти формулы значительно упрощают некоторые расчёты. С их помощью можно получить многие тригонометрические тождества путём проведения преобразований и дальнейшей обратной замены.

Кроме того, из формулы вытекает известное тождество Эйлера, которое связывает пять фундаментальных математических констант. Оно представляет собой частный случай при x=π. При подстановке числа π синус обращается в 0, а косинус принимает значение 1.

Остаётся лишь перенести 1 в другую часть уравнения, чтоб получить все пять констант в явном виде.

Тождество было опубликовано Эйлером в 1740 году и вызвало общественный резонанс. Имели место даже попытки мистического толкования как символа единства математики. Ведь тождество связывает величины, произошедшие из разных разделов математики:

  • нуль и единица — из арифметики;
  • число π — геометрии;
  • мнимая единица (i) — алгебры;
  • число Эйлера (е) — из математического анализа.

Наглядное доказательство

Существуют альтернативные доказательства, как для почти любых математических выражений. Более наглядное отображение может дать рассмотрение производной выражения в показательной форме, а именно от числа с модулем, равным единице.

Производная экспоненты равна той же самой экспоненте, но с одним изменением: необходимо умножить её значение, на которое умножался аргумент в степени.

Умножение на i аналогично повороту на 90 градусов. Полученный угол даёт возможность провести аналогию с центростремительной силой – подтверждается то, что точка движется по окружности с центром в начале координат. Но в то же время, для этой же окружности действует отображение точек через сумму косинуса и синуса. Отсюда вытекает взаимное соответствие комплексной экспоненты и тригонометрических функций.

В науке и технике

В комплексном анализе для возведения числа в степень его переводят в тригонометрическую или показательную форму. Например, возведение в степень комплексного числа в тригонометрической форме легко произвести, пользуясь формулой Муавра. Тем не менее, показательная форма позволяет сократить объёмы записей, не усложняя их. Так что имеет смысл проводить промежуточные расчёты, используя именно её. Хотя для простых случаев есть возможность просто вычислять корни и степени с помощью онлайн-калькуляторов. Они тоже используют переходы между формами комплексного числа.

Согласно формуле Муавра, при возведении комплексного числа в степень необходимо возвести в эту степень модуль числа и умножить аргумент на тот же показатель степени. Для вычисления корня производятся аналогичные операции: взятие корня и деление соответственно.

Но для получения всех корней необходимо учитывать возможность сдвига аргумента 2π и кратные ему значения (при повороте на полный оборот попадают в ту же точку – то же число). В связи с этим, при взятии корня образуется также множество результатов, но сдвиг между ними в равное показателю корня раз меньший. Следовательно, на каждый оборот приходится несколько корней, что необходимо учитывать в большинстве расчётов.

Ещё более широкие перспективы открываются благодаря свойству экспоненты при дифференцировании и интегрировании переходить самой в себя. Задачи решаются на порядок проще, чем при проведении вычислений с тригонометрическими функциями. Как следствие, показательная форма комплексного числа и формула Эйлера широко применяются в физике и технике, а также множестве программных алгоритмов.

Ссылка на основную публикацию
Шаблоны букв английского алфавита для вырезания
Трафареты и шаблоны букв английского алфавита для вырезания из бумаги, это разнообразные шрифты разного стиля и тематики. Трафареты помогут вам...
Что значит спящий режим компьютера
В операционной системе Windows есть несколько режимов выключения компьютера – это обыкновенный режим, (который полностью выключает PC), режим гибернации и...
Что значит сторнировать документ
Сто́рно (итал. storno — перевод на другой счёт, отвод; от stornare — поворачивать обратно) — в общем смысле возврат к...
Шаблоны для брошюры в ворде
Автор: admin Дата записи Быстрей всего набросать буклет, если под рукой окажется готовый шаблон. Проще всего создать буклет в программе...
Adblock detector