Что называется обходом контура

Что называется обходом контура

Один из методов анализа электрической цепи является метод контурных токов. Основой для него служит второй закон Кирхгофа. Главное его преимущество это уменьшение количества уравнений до m – n +1, напоминаем что m — количество ветвей, а n — количество узлов в цепи. На практике такое уменьшение существенно упрощает расчет.

Основные понятия

Контурный ток — это величина, которая одинакова во всех ветвях данного контура. Обычно в расчетах они обозначаются двойными индексами, например I11, I22 и тд.

Действительный ток в определенной ветви определяется алгебраической суммой контурных токов, в которую эта ветвь входит. Нахождение действительных токов и есть первоочередная задача метода контурных токов.

Контурная ЭДС — это сумма всех ЭДС входящих в этот контур.

Собственным сопротивлением контура называется сумма сопротивлений всех ветвей, которые в него входят.

Общим сопротивлением контура называется сопротивление ветви, смежное двум контурам.

Общий план составления уравнений

1 – Выбор направления действительных токов.

2 – Выбор независимых контуров и направления контурных токов в них.

3 – Определение собственных и общих сопротивлений контуров

4 – Составление уравнений и нахождение контурных токов

5 – Нахождение действительных токов

Итак, после ознакомления с теорией предлагаем приступить к практике! Рассмотрим пример.

Выполняем все поэтапно.

1. Произвольно выбираем направления действительных токов I1-I6.

2. Выделяем три контура, а затем указываем направление контурных токов I11,I22,I33. Мы выберем направление по часовой стрелке.

3. Определяем собственные сопротивления контуров. Для этого складываем сопротивления в каждом контуре.

Затем определяем общие сопротивления, общие сопротивления легко обнаружить, они принадлежат сразу нескольким контурам, например сопротивление R4 принадлежит контуру 1 и контуру 2. Поэтому для удобства обозначим такие сопротивления номерами контуров к которым они принадлежат.

4. Приступаем к основному этапу – составлению системы уравнений контурных токов. В левой части уравнений входят падения напряжений в контуре, а в правой ЭДС источников данного контура.

Так как контура у нас три, следовательно, система будет состоять из трех уравнений. Для первого контура уравнение будет выглядеть следующим образом:

Ток первого контура I11, умножаем на собственное сопротивление R11 этого же контура, а затем вычитаем ток I22, помноженный на общее сопротивление первого и второго контуров R21 и ток I33, помноженный на общее сопротивление первого и третьего контура R31. Данное выражение будет равняться ЭДС E1 этого контура. Значение ЭДС берем со знаком плюс, так как направление обхода (по часовой стрелке) совпадает с направление ЭДС, в противном случае нужно было бы брать со знаком минус.

Те же действия проделываем с двумя другими контурами и в итоге получаем систему:

В полученную систему подставляем уже известные значения сопротивлений и решаем её любым известным способом.

5. Последним этапом находим действительные токи, для этого нужно записать для них выражения.

Контурный ток равен действительному току, который принадлежит только этому контуру. То есть другими словами, если ток протекает только в одном контуре, то он равен контурному.

Но, нужно учитывать направление обхода, например, в нашем случае ток I2 не совпадает с направлением, поэтому берем его со знаком минус.

Токи, протекающие через общие сопротивления определяем как алгебраическую сумму контурных, учитывая направление обхода.

Например, через резистор R4 протекает ток I4, его направление совпадает с направлением обхода первого контура и противоположно направлению второго контура. Значит, для него выражение будет выглядеть

А для остальных

Читайте также:  Можно ли ставить розетки на складе

Так решаются задачи методом контурных токов. Надеемся что вам пригодится данный материал, удачи!

N — 1.

Недостающее уравнение можно получить на основании второго закона Кирхгофа. Для контура abcf при обходе по часовой стрелке:

Если направление обхода контура совпадает с направлением ЭДС и токов, то эти ЭДС и соответствующие падания напряжений берутся со знаком «плюс».

При составлении уравнений по второму закону Кирхгофа контуры нужно выбирать так, чтобы каждый из них отличался хотя бы одной ветвью.

Вывод: метод уравнений Кирхгофа сводится к со­ставление системы уравнений в соответствии с первым и вторым законами Кирхгофа и решение этой системы относительно неизве­стных токов.

Если электрическая цепь содержит «В» ветвей, то в об­щем случае необходимо определить «В» токов, т. е. токи в каждой из ветвей. Следовательно общее число уравнений по первому и второ­му законам Кирхгофа должно быть равно «В».

При числе узлов «У» — число независимых уравнений по первому закону Кирхгофа будет «У – 1», следовательно, остальные «П» уравнений должны быть составлены по второму закону Кирхгофа:

П = В — (У — 1).

Общее число уравнений, составленных по первому и второму законам Кирхгофа, равно числу ветвей, т. е. числу неизвестных то­ков; это позволяет найти токи во всех ветвях электрической цепи.

Если сложная цепь содер­жит довольно много узлов и контуров, то ее расчет с помощью первого и второго законов Кирхгофа будет связан с решением большого числа уравнений. Вводя понятие о контурных токах, можно свести уравнения, составленные по законам Кирхгофа, к системе урав­нений, составленных только для независимых конту­ров.

Под контурными токами понимают условные токи, замыкающиеся в соответствующих контурах.

Контурный ток обозначается буквой I с римским индексом, отвечающим номеру независимого контура. Контурный ток равен току в ветви, по которой он протекает индивидуально.

Рассмотрим схему цепи, представленную на рис. 2.14.

Эта схема имеет два независимых контура I и II, в каждом из которых проходят токи I1 и I11. На­правления этих токов выбирается произвольными, на­пример по часовой стрелке. Из рассмотрения схемы (рис. 2.14) видно, что реальные токи во внешних вет­вях равны контурным: I1 = I1 I3 = I11

Ток во внутрен­ней ветви равен разности контурных токов: I2 = I1 — I11

Для определения контурных токов составим два уравнения:

Собственным сопротивлением контура называется сумма всех сопротивлений в каждом независимом контуре.

Собственное сопротивление обозначается буквой R с двойным индексом соответственно номеру того контура, к которому относится.

Взаимным сопротивлением контуров называется сопротивление, входящее одновременно в каждый из двух смежных контуров.

Взаимное сопротивление обозначается буквой R с двумя индексами соответственно номерам смежных контуров.

Контурной ЭДС называется алгебраическая сумма всех ЭДС в каждом независимом контуре.

Вывод: метод контурных токов сводится к составлению и решению системы уравнений, получаемых только по второму закону Кирхгофа применительно к понятиям контурных токов, сопротивлений и ЭДС.

МЕТОД УЗЛОВОГО НАПРЯЖЕНИЯ.

Часто в сложной цепи имеется всего два узла, как, например, в схеме рис. 2.14. В этом случае расчет цепи значительно упрощается, так как достаточно определить так называемое узловое напряжение Uаб.(рис.2.15) После этого токи в ветвях находятся следующим образом:

Все токи в ветвях направляются к узлу, потенциал которого условно принимается за нуль. Узловое напряжение:

где G – проводимость соответствующих ветвей.

Если ЭДС источника направлена к узлу, то произведение ЕG берется со знаком «минус». Токи в ветвях определяются так:

Читайте также:  Восстановление эмали в микроволновке

Вывод: метод узлового напряжения сводится к составлению системы уравнений, составленных только по первому закону Кирхгофа; из этих уравнений определяются напряжения в узлах схемы электрической цепи относительно некоторого базисного узла, потенциал которого изначально принимается равным нулю, а токи в ветвях, соединяющих узлы, находят по закону Ома.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8773 — | 7582 — или читать все.

В каждой электрической цепи имеются так называемые Р – ребра (они же ветви, звенья, участки) и У – узлы. Для ее описания существует система уравнений, в которых используются два правила Кирхгофа. В них, в качестве независимых переменных, выступают токи ребер. Поэтому количество независимых переменных будет равно количеству уравнений, что дает возможность нормального разрешения данной системы. На практике используются методы, направленные на сокращение числа уравнений. Среди них очень часто используется метод контурных токов, позволяющий выполнять расчеты и получать точные результаты.

Суть метода контурных токов

Основные принципы данного метода основываются на том факте, что протекающие в ребрах цепи токи, не все считаются независимыми. Присутствующие в системе У-1 уравнения для узлов, четко показывают зависимость от них У-1 токов. При выделении в электрической цепи независимого тока Р-У+1, вся система может быть сокращена до уравнений Р-У+1. Таким образом, метод контурных токов представляет собой очень простое и удобное выделение в цепи независимых токов Р-У+1.

Использование данного способа расчетов допускает, что в каждом независимом контуре Р-У+1 осуществляется циркуляция определенного виртуального контурного тока. Если какое-либо ребро относится лишь к одному конкретному контуру, то значение протекающего в нем реального тока будет равно контурному. В том случае, когда ребро входит в состав сразу нескольких контуров, ток, протекающий в нем, будет представлять собой сумму, включающую в себя соответствующие контурные токи. В этом случае обязательно учитывается направление обхода контуров. Независимыми контурами перекрывается практически вся схема, поэтому ток, протекающий в каком угодно ребре может быть выражен путем контурных токов, составляющих полную систему всех токов.

Для того чтобы построить систему независимых контуров, используется простой и наглядный метод создания планарных графов. На данной схеме ветви и узлы цепи размещаются на плоскости таким образом, что взаимное пересечение ребер полностью исключается. С помощью этого метода плоскость разбивается на области, ограниченные замкнутыми цепочками ребер. Именно они и составляют систему независимых контуров. Данный метод более всего подходит для ручных расчетов схем. Однако его применение может стать затруднительным или вовсе невозможным, если рассматриваемая схема не укладывается в рамки планарного графа.

Другим способом расчетов служит метод выделения максимального дерева. Само дерево представлено в виде подмножества звеньев электрической цепи и является односвязным графом, в котором отсутствуют замкнутые контуры. Для того чтобы оно появилось, из цепи постепенно исключаются некоторые звенья. Дерево становится максимальным, когда к нему добавляется любое исключенное звено, в результате чего образуется контур.

Применение метода выделения максимального дерева представляет собой последовательное исключение из цепи заранее установленных звеньев в соответствии с определенными правилами. Каждый шаг в цепи предполагает произвольное исключение одного звена. Если такое исключение нарушает односвязность графа, разбивая его на две отдельные части, в этом случае звено может возвратиться обратно в цепь. Если граф остается односвязным, то и звено остается исключенным. В конечном итоге, количество звеньев, исключенных из цепи, оказывается равным количеству независимых контуров, расположенных в схеме. Получение каждого нового независимого контура связано с присоединением к электрической цепи конкретного исключенного звена.

Читайте также:  Емкость аккумулятора чем больше тем лучше

Применение метода контурных токов для расчета цепи

В соответствии с этой методикой, неизвестными величинами являются расчетные или контурные токи, предположительно протекающие во всех независимых контурах. В связи с этим, все неизвестные токи и уравнения в системе, равны количеству независимых контуров электрической цепи.

Токи ветвей в соответствии с данным методом рассчитываются следующим образом:

  • В первую очередь вычерчивается схема цепи с обозначением всех ее элементов.
  • Далее определяется расположение всех независимых контуров.
  • Направления протекания контурных токов задаются произвольно по часовой или против часовой стрелки в каждом независимом контуре. Они обозначаются с использованием цифровых или комбинированных символов.
  • В соответствии со вторым законом Кирхгофа, затрагивающего контурные токи, составляются уравнения для всех независимых контуров. В записанном равенстве направления обхода контура и контурного тока этого же контура совпадают. Необходимо учитывать и то обстоятельство, что в ветвях, расположенных рядом, протекают собственные контурные токи. Падение напряжения потребителей берется отдельно от каждого тока.
  • Следующим этапом является решение полученной системы любым удобным методом, и окончательное определение контурных токов.
  • Нужно задать направление реальных токов во всех ветвях и обозначить их отдельной маркировкой, чтобы не перепутать с контурными.
  • Далее нужно от контурных токов перейти к реальным, исходя из того, что значение реального тока конкретной ветви составляет алгебраическую сумму контурных токов, протекающих по этой ветви.

Если направление контурного тока совпадает с направлением реального тока, то при выполнении алгебраического суммирования математический знак не меняется. В противном случае значение контурного тока нужно умножить на -1.

Метод контурных токов очень часто применяется для расчетов сложных цепей. В качестве примера для приведенной схемы нужно задать следующие параметры: Е1 = 24В, Е2 = 12В, r1 = r2 = 4 Ом, r3 = 1 Ом, r4 = 3 Ом.

Для решения этой сложной задачи составляются два уравнения, соответствующие двум независимым контурам. Направление контурных токов будет по часовой стрелке и обозначается I11 и I22. На основании второго закона Кирхгофа составляются следующие уравнения:

После решения системы получаются контурные токи со значением I11 = I22 = 3 А. Далее произвольно обозначается направление реальных токов, как I1, I2, I3. Все они имеют одинаковое направление – вверх по вертикали. После этого выполняется переход от контурных к реальным. В первой ветви имеется течение только одного контурного тока т I11. Его направление совпадает с реальным током, поэтому I1 + I11 = 3 А.

Формирование реального тока во второй ветке осуществляется за счет двух контурных токов I11 и I22. Направление тока I22 совпадает с реальным, а направление I11 будет строго противоположно реальному. Таким образом, I2 = I22 – I11 = 3 – 3 = 0 А. В третьей ветке I3 наблюдается течение лишь контурного тока I22. Его направление будет противоположным направлению реального тока, поэтому в данном случае расчеты выглядят следующим образом: I3 = -I22 = -3А.

Основным положительным качеством метода контурных токов по сравнению с вычислениями по законам Кирхгофа, является значительно меньшее количество уравнений, используемых для вычислений. Тем не менее, здесь присутствуют определенные сложности. Например, реальные токи ветвей не всегда удается определить быстро и с высокой точностью.

Ссылка на основную публикацию
Что значит спящий режим компьютера
В операционной системе Windows есть несколько режимов выключения компьютера – это обыкновенный режим, (который полностью выключает PC), режим гибернации и...
Чем открыть файл с расширением dat
После установки каких-нибудь программ, получения почты при помощи почтовых клиентов, на компьютере создаются .dat файлы. Чаще всего они почти не...
Чем отличается frontend от backend
Переводы , 13 апреля 2017 в 19:58 Мая Устинова Вы наверняка уже слышали эти модные в сфере программирования слова «фронтенд»...
Что значит сторнировать документ
Сто́рно (итал. storno — перевод на другой счёт, отвод; от stornare — поворачивать обратно) — в общем смысле возврат к...
Adblock detector