Чему равно напряжение на зажимах источника тока

Чему равно напряжение на зажимах источника тока

Измерения показывают, что напряжение на зажимах источника тока, замкнутого на внешнюю цепь, зависит от силы отбираемого тока (от «нагрузки») и изменяется с изменением последнего. Пользуясь законом Ома, мы можем сейчас разобрать этот вопрос точнее.

Из формулы (80.1) имеем

, (81.1)

где – сопротивление внешней цепи, а – внутреннее сопротивление источника. Но к внешней цепи мы вправе применить закон Ома для участка цепи:

. (81.2)

Здесь – напряжение во внешней цепи, т. е. разность потенциалов на зажимах источника. Оно может быть выражено на основании (81.1), (81.2) следующей формулой:

. (81.3)

Мы видим, что при замкнутой цепи напряжение на зажимах источника тока всегда меньше э. д. с. . Напряжение зависит от силы тока и только в предельном случае разомкнутой цепи, когда сила тока , напряжение на зажимах равно э. д. с.

Уменьшение напряжения на зажимах источника при наличии тока легко наблюдать на опыте. Для этого нужно замкнуть какой-либо гальванический элемент на реостат и подключить к зажимам элемента вольтметр (рис. 127). Перемещая движок реостата, можно видеть, что чем меньше сопротивление внешней цепи, т. е. чем больше ток, тем меньше напряжение на зажимах источника. Если сопротивление внешней цепи сделать очень малым по сравнению с внутренним сопротивлением источника («вывести» реостат), т. е. сделать «короткое замыкание», то напряжение на зажимах делается равным нулю.

Рис. 127. С уменьшением сопротивления внешней цепи напряжение на зажимах источника тока уменьшается: а) схема опыта; б) общий вид экспериментальной установки, 1 – источник тока, 2 – реостат, 3 – амперметр, 4 – вольтметр

Что же касается тока, то он при коротком замыкании достигает своего максимального значения . Сила этого «тока короткого замыкания» получается из закона Ома (80.1), если в нем положить (т. е. пренебречь сопротивлением по сравнению с ):

. (81.4)

Отсюда видно, что ток короткого замыкания зависит не только от э. д. с., но также и от внутреннего сопротивления источника. Поэтому короткое замыкание представляет различную опасность для разных источников тока.

Короткие замыкания гальванического элемента сравнительно безвредны, так как при небольшой э. д. с. элементов их внутреннее сопротивление велико, и поэтому токи короткого замыкания малы. Такие токи не могут вызвать серьезные разрушения, и поэтому к изоляции проводов в целях, питаемых элементами (звонки, телефоны и т. п.), не предъявляют особо высоких требований. Иное дело силовые или осветительные цепи, питаемые мощными генераторами. При значительной э. д. с. (100 и более вольт) внутреннее сопротивление этих источников ничтожно мало, и поэтому ток короткого замыкания может достигнуть огромной силы. В этом случае короткое замыкание может привести к расплавлению проводов, вызвать пожар и т. д. Поэтому к устройству и изоляции таких цепей предъявляют строгие технические требования, которые ни в коем случае нельзя нарушать без риска вызвать опасные последствия. Такие цепи всегда снабжаются предохранителями (§ 63) и притом нередко в различных местах: общий предохранитель (при главном вводе), групповые и штепсельные предохранители.

Читайте также:  Уход за литиевыми аккумуляторами

81.1. Внутреннее сопротивление элемента Даниеля с э. д .с. 1,1 В равно 0,5 Ом. Вычислите ток короткого замыкания этого элемента.

81.2. Элемент из предыдущей задачи замкнут на сопротивление 0,6 Ом. Чему равно напряжение на зажимах элемента?

81.3. Э. д. с. генератора постоянного тока равна 220 В, а внутреннее сопротивление равно 0,02 Ом. Какой ток возникает при коротком замыкании?

81.4. При измерении э. д. с. источников при помощи вольтметра мы всегда допускаем некоторую погрешность, так как через вольтметр течет некоторый, хотя и очень малый, ток, и поэтому источник, строго говоря, не разомкнут, а замкнут на вольтметр. Пусть внутреннее сопротивление элемента равно 1 Ом, его э. д. с. равна 1,8 В, а сопротивление вольтметра равно 179 Ом. Какую погрешность при измерении э. д. с. мы допускаем?

81.5. Можно ли точно измерить э. д. с. при помощи электрометра? Как нужно присоединить электрометр к элементу для измерения его э. д. с.?

81.6. Изменяется ли показание электрометра, соединенного с гальваническим элементом, если параллельно с ним включить конденсатор, как показано на рис. 128? Будет ли иметь значение емкость конденсатора?

Рис. 128. К упражнению 81.6

81.7. Э. д. с. некоторого элемента измеряют при помощи электрометра с конденсатором (рис. 129,а). Электрометр, отсоединенный от элемента, после снятия диска показывает 500 В (рис. 129,б). При этом известно, что емкость конденсатора при удалении диска уменьшается в 250 раз. Чему равно напряжение элемента?

Как видно из рисунка:

или

V = ε для разомкнутой цепи.

Вопросы для самоконтроля

Почему сопротивление проводников уменьшается при повышении температуры?

Сформулируйте закон Ома для однородного участка цепи?

Что называется силой тока?

Читайте также:  Бонус коды wot сентябрь 2018

Что называется электродвижущей силой генератора?

Объясните происхождение сторонних сил.

Сколько электронов проходит в 1 с через поперечное сечение медного провода при силе тока 1 А?

Что называется узлом разветвления электрической цепи?

Запишите математические выражения первого и второго правил Кирхгофа. Сформулируйте эти правила.

Как определяется работа и мощность электрического поля?

Сформулируйте закон Джоуля-Ленца.

Как определяется закон Ома для неоднородного участка цепи? для замкнутой цепи?

От чего зависит и как определяется КПД источника тока?

Детлаф, А.А. Курс физики учеб. пособие / А.А. Детлаф, Б.М. Яворский.-7-е изд. Стер.-М. : ИЦ «Академия».-2008.-720 с.

Савельев, И.В. Курс физики: в 3т.:учеб.пособие Т.1: Электричество. Колебания и волны. Волновая оптика. /И.В. Савельев.-4-е изд. стер. – СПб.; М. Краснодар: Лань.-2008. – 480 с.

Трофимова, Т.И. курс физики: учеб. пособие/ Т.И. Трофимова.- 15-е изд., стер.- М.: ИЦ «Академия», 2007.-560 с.

Фейнман, Р. Фейнмановские лекции по физике / Р. Фейнман, Р. Лейтон, М. Сэндс. – М.: Мир.

Т.1. Современная наука о природе. Законы механики. – 1965. –232 с.

Т. 2. Пространство, время, движение. – 1965. – 168 с.

Т. 3. Излучение. Волны. Кванты. – 1965. – 240 с.

Берклеевский курс физики. Т.1,2,3. – М.: Наука, 1984

Т. 1. Китель, Ч. Механика / Ч. Китель, У. Найт, М. Рудерман. – 480 с.

Т. 2. Парселл, Э. Электричество и магнетизм / Э. Парселл. – 448 с.

Т. 3. Крауфорд, Ф. Волны / Ф. Крауфорд – 512 с.

Фриш, С.Э. Курс общей физики: в 3 т.: учеб. / С.Э. Фриш, А.В. Тиморева.- СПб.: М.; Краснодар: Лань.-2009.

Т.1. Физические основы механики. Молекулярная физика. Колебания и волны: учебник — 480 с.

Т.2: Электрические и электромагнитные явления: учебник. – 518 с.

Т. 3. Оптика. Атомная физика : учебник– 656 с.

Лекция 4 магнитное поле

4.1. Магнитное поле. Законы Ампера и Био – Савара – Лапласа.

Взаимодействие проводников с током. Закон Ампера.

Известно, что постоянный магнит оказывает действие на проводник с током (например, рамку с током); известно также обратное явление – проводник с током оказывает действие на постоянный магнит (например, на магнитную стрелку компаса).

Рисунок 4.1. Действие постоянного магнита на рамку с током и проводника с током на магнитную стрелку компаса.

Читайте также:  Как измерить яркость света

Естественно поставить вопрос: а не может ли один проводник с током оказывать непосредственное действие на другой проводник с током? Положительный ответ на этот вопрос дал в 1820г. Ампер (Ampere A., 1775-1836), установивший силовой закон взаимодействия проводников с током.

Взаимодействие двух прямолинейных проводников с током.

Так, два прямолинейных параллельных проводника (рис. 4.2.) притягиваются, если токи в них текут в одном направлении и отталкиваются, если токи имеют противоположное направление.

Рисунок 4.2.Взаимодейтвие параллельных проводников с током.

Для того, чтобы сформулировать закон Ампера в современном виде, введем понятие элемента тока как вектора, равного произведению силы тока I на элемент длины проводника. Элемент тока в магнитостатике играет ту же роль, что и точечный заряд в электростатике.

Рисунок 4.3.Элемент проводника с током.

Своими опытами Ампер установил, что сила взаимодействия двух элементов тока:

1) ;

2) ;

3) — зависит от взаимной ориентации элементов тока.

Объединяя эти результаты, можем написать закон Ампера в виде:

Углы θ1 и θ2 характеризуют ориентацию элементов тока (рис. 4.4.); Коэффициент пропорциональности k зависит от выбора системы единиц измерения.

Рисунок 4.4. Взаимодействие двух элементов тока.

В системе СИ: , где— магнитная постоянная.

Закон Ампера является аналогом закона Кулона в магнитостатике и выражает собой силу взаимодействия двух элементов тока. Однако в отличие от закона Кулона, он имеет более сложное написание, что обусловлено тем, что элемент тока (в отличие от точечного заряда) характеризуется не только величиной, но и направлением в пространстве. Заметим, что согласно закону Ампера (см. рис.4.). Это кажущееся противоречие с третьим законом Ньютона связано с тем, что в действительности мы имеем дело не с элементами токов, а с замкнутыми макроскопическими токами, для которых третий закон Ньютона выполняется.

В векторной форме закон Ампера записывается следующим образом:

Тема: От чего зависит напряжение на зажимах источника тока

От чего зависит напряжение на зажимах источника тока

Консультант Moderators

Re: От чего зависит напряжение на зажимах источника тока

Здравствуйте. Напряжение на зажимах источника тока, замкнутого на внешнюю цепь, зависит от силы отбираемого тока (от «нагрузки») и изменяется с изменением последнего.

Оставляя отзыв о работе технического специалиста в социальных сетях, вы помогаете делать нашу работу еще лучше.

Сообщений 2
Ссылка на основную публикацию
Чем открыть файл с расширением dat
После установки каких-нибудь программ, получения почты при помощи почтовых клиентов, на компьютере создаются .dat файлы. Чаще всего они почти не...
Фото с листком для вк
Сигна в ВК – это просто фотография человека с листком бумаги, на котором обычно написано чье-то имя. Часто надписи делают...
Фото спортивных мужчин 40 лет
17. Джерард Батлер, 48 лет (kinopoisk) «Законопослушный гражданин» Джерард Батлер когда-то работал официантом, демонстратором игрушек и даже юристом. Он также...
Чем отличается frontend от backend
Переводы , 13 апреля 2017 в 19:58 Мая Устинова Вы наверняка уже слышали эти модные в сфере программирования слова «фронтенд»...
Adblock detector