Чем замкнутая ломаная отличается от многоугольника

Чем замкнутая ломаная отличается от многоугольника

Автор: Гвоздивская Наталья Юрьевна
Должность: учитель начальных классов
Учебное заведение: МАОУ СОШ №125
Населённый пункт: г.Екатеринбург
Наименование материала: конструкт урока математики
Тема: "Замкнутая ломаная и многоугольник"
Дата публикации: 14.03.2017
Раздел: начальное образование

Тема урока (Т): «Замкнутая ломаная и многоугольник»

Тип урока: урок «открытия» нового знания

Знакомство с понятиями «замкнутая линия» и «незамкнутая линия».

Распознавание замкнутых и незамкнутых линий на чертежах.

Выполнение классификации по разным основаниям.

Планируемые результаты (универсальные учебные действия)

Личностные универсальные учебные действия

-проявлять положительное отношение к школе и учебной деятельности, к изучению математики;

-иметь общее представление о моральных нормах поведения;

-осуществлять оценку работ и ответов одноклассников на основе заданных критериев успешности учебной

Регулятивные универсальные учебные действия

-понимать выделенные учителем ориентиры действия в учебном материале;

-оценивать совместно с учителем или одноклассниками результат своих действий, вносить соответствующие

-в сотрудничетве с учителем, классом находить несколько вариантов решения учебной задачи.

Познавательные универсальные учебные действия

кодировать информацию в знаковосимволической форме в простейших случаях (с использованием 2-5 знаков или

символов, 1-2 операций);

на основе кодирования строить простейшие модели математических понятий, отношений, задачных ситуаций;

строить небольшие математические сообщения в устной и письменной форме (2-3 предложения);

осуществлять анализ объекта (с выделением 2-3 существенных признаков);

— проводить сравнение (последовательно по 2-3 основаниям, наглядное и по представлению; сопоставление и

под руководством учителя проводить классификацию изучаемых объектов (самостоятельно выделять основание

классификации, находить разные основания для классификации, проводить разбиение объектов на группы по

самостоятельно проводить сериацию объектов;

под руководством учителя осуществлять действие подведения под понятие (для изученных математических понятий);

давать характеристики изучаемым математическим объектам на основе их анализа.

Коммуникативные универсальные учебные действия

-воспринимать мнение других людей о математических явлениях;

-понимать задаваемые вопросы;

-выражать свою точку зрения;

-адекватно относиться к мнению одноклассников, взрослых, принимать их позицию.

Методы обучения: проблемные, частично-поисковые.

Формы организации познавательной деятельности учащихся:

индивидуальная, парная, групповая, коллективная

Для учителя: ноутбук, интерактивная доска, документ-камера, модель ломаной (оргстекло),учебник.

Для учащихся: учебник, тетрадь для самостоятельных работ, тетрадь для работ по математике, ручка, линейки,

Краткое описание

Специалисты называют ломаной ту геометрическую фигуру, которая представляет собой непрямую линию, состоящую исключительно из многочисленных соединённых отрезков. Учащимся нужно запомнить, что все эти фрагменты могут сходиться под абсолютно разными углами. Проще говоря, если есть даже самый маленький угол между двумя соединёнными отрезками, то это линия своеобразного ломаного типа.

Прямая тоже может состоять сразу из нескольких геометрических фрагментов, но угол их соединения приравнивается к нулю. Для избежания грубых математических ошибок нужно помнить, что ломаная линия отличается от кривой, так как отдельные отрезки представляют собой прямую линию, чего нельзя сказать о кривой.

В некоторых случаях пространственная ломаная может образовывать замкнутую фигуру. Но такая ситуация возможна только тогда, когда концы крайних отрезков совпадают, а также пересекают самих себя. Рассматриваемая в математике фигура состоит из вершин и отрезков, которые и соединяют эти вершины. Но в этом случае действует правило — два последних отрезка не должны лежать на одной прямой.

Сторонами или звеньями изогнутой линии принято называть составные отрезки. Минимальное количество звеньев — два. Специалисты привыкли называть чёрными точками конечные вершины ломаной линии. Чтобы графически всё выглядело правильно, необходимо использовать обозначения в соответствии с названиями задействованных вершин.

Читайте также:  Обрезка песни для айфона

Если конечные вершины совпадают, тогда речь касается изогнутой замкнутой линии. В качестве примера можно рассмотреть многоугольник. Эта фигура представляет собой плоскую замкнутую ломаную, которая лишена каких-либо самопересечений. Вершины ломаной линии и её звенья относятся к многоугольнику. Если речь касается фигуры с тремя сторонами и вершинами, то это треугольник.

Немного сложнее разобраться с замкнутой ломаной и её четырьмя сторонами, так как это может быть прямоугольник, квадрат, параллелограмм, ромб и даже трапеция. Если фигура имеет пять или более сторон, то она называется n-угольником. Символ n указывает на точное число вершин.

Некоторые математические примеры касаются изогнутой линии с самопересечениями (пятиконечная звезда). К этой категории также можно отнести зигзаг, в котором каждый второй отрезок параллелен другому, а последние формируют одинаковый угол.

Математическое определение

Ломанной принято называть ту геометрическую фигуру, которая состоит из обычных отрезков (R1, R2, R3 и R4, Rn-1 Rn). Вершинами изогнутой принято называть точки R1…Rn, а вот все остальные отрезки — это неотъемлемые звенья. Если для любого w действует формула <1, 2, n — 2>, а отрезки не расположены на одной прямой, то такая ломанная будет называться невырожденной. В противном случае придётся иметь дело с вырожденным примером.

Для лучшего усвоения этой темы следует рассмотреть несколько примеров. Изогнутая может иметь самопересечение, но это возможно только в том случае, если минимум два отрезка обладают общей точкой (за исключением вершины).

В математике часто можно встретить фигуру, которая является обычной ломаной линией. В этом случае практикуется применение следующей записи: R1R2R3R4R5R6. Если ученику предстоит разобраться со всеми нюансами построения замкнутой ломаной из трёх звеньев и более, тогда ему понадобятся вспомогательные отрезки (к примеру: R1, R2, а также Rn -1 Rn, которые не должны лежать на одной прямой).

Замкнутую плоскую ломаную линию принято называть многоугольником. Если рассматривать многогранники, то все стороны фигуры будут называться рёбрами. Учителя России предпочитают создавать краткосрочное планирование по этой теме, так как в этом случае можно донести больше полезной информации до учеников.

Гораздо проще разобраться с изгибами зигзага, так как они используются в швейном деле, в распространённом декоративном оформлении предметов обихода в качестве орнамента. Стоит отметить, что изогнутая линия нашла широкое применение в различных отраслях:

  1. Архитектура. Изогнутые линии позволяют сооружать интересные номера.
  2. Картография (тщательное проектирование маршрутов и подробное схематическое изображение всех улиц).
  3. Химическая отрасль (различные соединения и своеобразные молекулярные структуры).
  4. Востребованный дизайн ландшафтов (утончённое оформление, расположение дорожек).
  5. Медицина (мониторы для наблюдения за сердечным ритмом).
  6. Метод освоения каллиграфических навыков в китайском языке.

Изучение этой темы в математике является обязательным, так как от этого зависит качество усвоения материала учеником.

Основные разновидности ломаных

Геометрическая фигура может быть построена совершенно по любому из действующих методов. Специалисты выделяют замкнутую, а также незамкнутую ломанную. Повышенное внимание уделяют самопересекающимся, непересекающимся линиям. Классическая замкнутая ломаная является многоугольником. В математике самопересекающейся принято называть ту линию, отрезки которой имеют минимум одно пересечение. По своей структуре ломаная может быть весьма разнообразной, из-за чего нужно внимательно относиться ко всем аспектам.

Читайте также:  Что важнее исходящая или входящая скорость интернета

В начальных классах школы принято рассматривать следующий пример: ломаная включает в себя сразу пять звеньев либо сторон: ZX, XC, CV, VB, BN. Та точка, где неизбежно соединяются два звена, называется вершиной. В этом случае имеется сразу четыре вершины: X, С, V, B.

Повышенное внимание нужно уделить изучению звена ломаной. Звеньями эксперты привыкли называть стороны либо отрезки, из которых образована линия. Всего одно такое звено может быть рассмотрено только в качестве отрезка. А вот для построения ломаной необходимо задействовать как минимум два звена. Вершины — это классические точки, которые представляют собой концы одних отрезков ломаной. Обозначить точки можно только латинскими буквами.

Пример замкнутой, а также традиционной незамкнутой ломаной линии, которую часто можно встретить в геометрии и алгебре:

Если необходимо определить точную длину ломаной, то для этого следует поочерёдно сложить все известные данные задействованных звеньев (ZX + XC + CV + VB + BN).

Базовые понятия

Чтобы гарантировано освоить все правила, которые касаются использования изогнутой линии в математике, необходимо разобраться со звеньями. Существует ряд нюансов, которые можно сопоставить с элементарной геометрической конструкцией. Линию формируют отдельные отрезки, которые в математике называются звеньями. Если все концы ломаной соединяются в одной точке, то такая фигура будет называться замкнутой.

Все задействованные звенья могут обладать взаимными пересечениями. Вершинами специалисты привыкли называть точки соединения отрезков. О многоугольнике можно говорить только в том случае, если звенья не пересекаются между собой. Звено обозначают сразу двумя латинскими буквами. Каждая вершина изогнутой линии может обозначаться только одной буквой. Только тщательное изучение всех правил и нюансов позволит правильно решать математические задачи.

Особенности построения многоугольников

В этом случае речь касается геометрической фигуры, отличающейся итоговым количеством звеньев, углов. Последние могут быть сформированы только несколькими звеньями замкнутой ломаной, которые сходятся в одной точке. Задействованные звенья также могут носить логическое название сторон многоугольника. Общие точки двух отрезков называются вершинами. Стоит учесть, что количество сторон либо звеньев в каждой такой фигуре в точности соответствует количеству углов. Если задействовать замкнутую ломаную из трёх отрезков, то в итоге получится треугольник.

Абсолютно все многоугольники обладают одинаковыми свойствами. Самая маленькая фигура включает в себя всего три стороны. Но расположенные в непосредственной близости треугольники могут формировать совершенно новые фигуры. Если имеющиеся вершины изучаемого многоугольника являются своеобразным дополнением одной стороны, то их всегда называют соседними.

Когда многоугольник был расположен относительно одной прямой в любой плоскости, то она называется выпуклой. А вот прямая может содержать в себе одну сторону фигуры и принадлежать полуплоскости. Если отрезок соединяет не соседние вершины, то он называется диагональю. Смежный внутренний угол при некоторой вершине называется внешним.

Следует отметить тот факт, что когда все имеющиеся углы и стороны многоугольника равны между собой, то речь касается правильных отрезков. Каждая геометрическая фигура обладает определёнными параметрами. Треугольниками в алгебре принято называть обычную плоскую фигуру, которая состоит из трёх точек, не расположенных на одной прямой. Для соединения используются обычные отрезки. Точки выступают в роли вершин треугольника. Такая фигура имеет всего три угла. Специалисты различают 6 разновидностей треугольников:

  1. Элементарные разносторонние. В этом случае каждая следующая сторона отличается своей длиной.
  2. Равносторонние. Абсолютно все стороны обладают идентичной длиной.
  3. Специфические остроугольные. Сформированные углы имеют острую форму.
  4. Универсальные равнобедренные. Сразу две стороны из трёх существующих обладают одинаковой длиной.
  5. Тупоугольные. Фигура обладает одним тупым углом.
  6. Традиционные прямоугольные. Нарисованная фигура должна иметь минимум один прямой угол.
Читайте также:  Как разблокировать функцию максимум приводов

Четырёхугольником называют ту конструкцию, которая обладает четырьмя сторонами и четырьмя сторонами. Использование таких геометрических фигур обладает определёнными нюансами.

Ключевые нюансы

Существует две линии SWT и SFT одинаковой толщины, которые соединяют свободные концы одной прямой ST. В итоге образуется ломаная. Изогнутая SFT именуется внутренней ломаной, а вот SWT внешней. В качестве примера лучше всего рассмотреть фигуру, которая соответствует математической теореме, что внешняя изогнутая превышает внутреннюю.

По условиям задачи были даны две ломаные: внутренняя SFT и внешняя SWT. Необходимо доказать, что SWT больше SFT. Для решения этой задачи нужно продолжить линию SF до пересечения с отрезком WT в точке Е. Линия SWE как ломаная гораздо больше прямой SE. Ломанная FET больше имеющейся прямой FT. Если сложить между собой все эти неравенства, то в итоге можно получить: SW+ WE + FE + ET > SF + FE + FT.

Для получения достоверного результата нужно вычесть из обеих частей неравенства по СЕ:

  • SW+ WE + ET > SF + FT.
  • WE + ET = WT.

Необходимо рассмотреть и вторую теорему, в соответствии с которой итоговая сумма пересекающихся изогнутых линий больше не пересекающихся. По условиям задачи были даны обычные пересекающиеся ломаные HLK и HRK, а также HR, LK и пересекающиеся части. Решение выглядит следующим образом: неравенства отрезков вытекают из того, что ломаная HEL гораздо больше прямой HL, а вот координаты KER превышают KR.

Нелишним также будет научиться находить общую меру сразу двух линий при помощи линейки. Это правило обязательно осваивают в начальных классах. Для поиска неизвестной общей меры обязательно нужно на большую линию наложить меньшую, потом первый остаток на меньший отрезок, а второй остаток на первый. Все эти манипуляции повторяют ровно до тех пор, пока самый последний остаток максимально не уложится в предпоследнем выполненном действии. Измерение линий всегда означает то, что учащемуся необходимо отыскать её отношение к другим отрезкам, принятым за единицу. Полученное значение называют длиной этой линии, которая может выражаться исключительно в каких-нибудь единицах.

Изучение ломаных линий очень важно, так как они окружают человека повсюду. Речь касается прямых линий, которые меняют своё первоначальное направление, замыкаются, а также пересекаются.

Ломаная линия состоит из отрезков — звеньев.

Конец одного отрезка — на­чало другого. Ни­какие два соседние звена не лежат на одной прямой.

Концы каждого звена — это вершины. Их можно обозначать буквами.

Ломаная линия бывает незамкнутая.

Из незамкнутой ломаной линии можно получить замкнутую ломаную линию.

Такая замкнутая ломаная линия называется треугольником.

У нее три вершины.

У треугольника три звена.

Замкнутая ломаная линия из четырёх звеньев называется четырёхугольником.

Замкнутая ломаная линия из пяти или шести звеньев называется многоугольником.

Чтобы найти длину ломаной линий нужно измерить длину каждого звена-отрезка и сложить все длины.

Поделись с друзьями в социальных сетях:

Ссылка на основную публикацию
Фото с листком для вк
Сигна в ВК – это просто фотография человека с листком бумаги, на котором обычно написано чье-то имя. Часто надписи делают...
Установка виндовс зависла на начало установки
Если вы решили переустановить или установить операционную систему, но начало установки Windows 7 зависает, то в этой статье, думаю, вы...
Установка драйвера принтера отказ
Нередки ситуации, когда не устанавливается принтер, хотя система видит, что к компьютеру подсоединилось новое оборудование. Решение такой задачи требует серьезного...
Фото спортивных мужчин 40 лет
17. Джерард Батлер, 48 лет (kinopoisk) «Законопослушный гражданин» Джерард Батлер когда-то работал официантом, демонстратором игрушек и даже юристом. Он также...
Adblock detector